

A Semi-Differentiated Model for the Potential-Sweep Voltammograms of Electrochemical Deposition Reactions

ECS 243rd Meeting - Molten Salts (High Temperature) Deposition and Extraction of Metals June 1st, 2023 Tyler Williams, Cameron Vann, Ranon Fuller, Devin Rappleye Brigham Young University

BYU College of Engineering Chemical Engineering BRIGHAM YOUNG UNIVERSITY

Acknowledgements

BYU College of Engineering Chemical Engineering

The PyRO Lab at BYU (pyro.byu.edu)

PyRO Lab

Develop sensors, models, and processes to support nuclear fuel processing, molten salt reactors, concentrated solar power, and other molten salt operations.

College of Engineering Chemical Engineering

Motivation – Semi-Differentiation can Clarify

Motivation – Peaks or Exponential Curves?

Rappleye, D., Jeong, S.-M., & Simpson, M. (2016). Electroanalytical Measurements of Binary-Analyte Mixtures in Molten LiCl-KCl Eutectic: Gadolinium(III)- and Lanthanum(III)- Chloride. Journal of The Electrochemical Society, 163(9), B507. <u>https://doi.org/10.1149/2.1011609jes</u>

$$\mathcal{D}^{1/2}i(t) = \frac{n^2 F^2 A \sqrt{D_o}}{2RT} v C_o e^{\frac{nF}{RT}(E_{eq} - \nu t - E_{1/2})}$$

Tylka, M. M., Willit, J. L., Prakash, J., & Williamson, M. A. (2015). Application of Voltammetry for Quantitative Analysis of Actinides in Molten Salts. Journal of The Electrochemical Society, 162(12), H852-H859. https://doi.org/10.1149/2.0281512jes

College of Engineering

BYU Chemical Engineering

An exponential function???

Theory - What is a Semi-Derivative?

$$\frac{\partial^2 f(x)}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f(x)}{\partial x} \right)$$
$$\frac{\partial f(x)}{\partial x}$$
$$f(x)$$
$$\frac{\partial^{-1} f(x)}{\partial x^{-1}} = \int f(x) dx$$
$$\frac{\partial^{-2} f(x)}{\partial x^{-2}} = \frac{\partial^{-1}}{\partial x^{-1}} \left(\frac{\partial^{-1} f(x)}{\partial x^{-1}} \right) = \int \int f(x) dx dx$$

T. Williams, C. Vann, R. Fuller, D. Rappleye, J. Electrochem. Soc. 170, 042502 (2023)

Theory – Semi-derivatives of Common Curves

BYU College of Engineering Chemical Engineering

Theory – Semi-derivatives of Common Curves

0.4

-0.2

-0.6

-0.8

0.25

133

PYRO L

$$e(t) = -\frac{n^{2}F^{2}AC_{0}^{*}v}{4RT}D_{0}^{1/2}\operatorname{sech}^{2}\left(\frac{nF}{2RT}(E(t) - E_{1/2})\right)$$

$$-\frac{0.5}{4RT}D_{0}^{1/2}\operatorname{sech}^{2}\left(\frac{nF}{2RT}(E(t) - E_{1/2})\right)$$

$$-\frac{0.5}{4.5}D_{0}^{1/2}D_{$$

P. Dalrymple-Aford, M. Goto, K.B. Oldham, J. Electroanal. Chem. Interfacial Electrochem. 85, 1 (1977) and T. Williams, R. Fuller, C. Vann, D. Rappleye, J. Electrochem. Soc., 170, 042502 (2023)

Results - Reconciling Peaks and Exponentials

BYU College of Engineering Chemical Engineering

Results - Reconciling Peaks and Exponentials

College of Engineering

BYU Chemical Engineering

Results – Model vs Data (Curves)

Results – Diffusion Coefficient Calculations

T. Williams, R. Fuller, C. Vann, D. Rappleye, J. Electrochem. Soc., 170, 042502 (2023)

"Semi-Differentiation of Reversible, Soluble-Insoluble Potential Sweep Voltammograms" J. Electrochem. Soc., **170**, 042502 (2023)

Conclusions & Next Steps

Conclusions:

- Semi-derivatives (SD) can help separate data.
- SD peaks are attributed to nucleation processes.
- The derived relations are as analytically useful as the Berzins-Delahay relations.

Next Steps:

- Develop non-ideal deposition models for cyclic voltammetry.
- Investigate the limits of how successful overlapping peaks can be separated.
- Optimize the fractional differentiation order. No reason why a semiderivative would be necessarily best.

