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Semi-Differentiation of Reversible, Soluble-Insoluble Potential
Sweep Voltammograms
Tyler Williams,z,* Ranon Fuller,* Cameron Vann, and Devin Rappleye**

Department of Chemical Engineering, Brigham Young University, United States of America

Semi-differentiation, or convolution as it is sometimes known, is a mathematical technique commonly used to disentangle
overlapping peaks in cyclic or linear sweep voltammograms. However, this technique is often misapplied due to misunderstandings
of fractional calculus. Additionally, rigorous treatment and validation of the theory of semi-differential analysis of reversible,
soluble-insoluble electrochemical reactions is lacking. Peculiarities of semi-differentiation are explored; theoretical relations for
semi-differentiated voltammograms are given; the exponential nature of the theoretical curve is explored; theoretical relations are
compared to experimental voltammograms for AgNO3 in 1 M nitric acid at 298 K, NiCl2 in LiCl at 974 K, and LaCl3 in LiCl at 971
K; and the diffusion coefficients calculated from theoretical relations developed in this paper are shown to agree with those
calculated using the Berzins-Delahay equation.
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Semi-differentiation, a fractional calculus operation, is a
powerful tool in analyzing overlapping peaks from potential sweep
methods, such as linear sweep voltammetry (LSV) or cyclic
voltammetry (CV), and can increase the resolution of electroanaly-
tical measurements by narrowing and separating peaks.1

Furthermore, semi-differentiating LSV or CV responses (typically
with respect to time) yields semi-derivatives with peaks that return to
a near zero baseline (i.e., no tail), which reduces the guesswork in
determining the baseline for subsequent peaks. Overlapping CV
peaks are commonly found in systems such as environmental
samples, nuclear fuel electrorefiners, and molten salt nuclear
reactors.1–7 In these applications, electroanalytical measurements
have demonstrated potential in identifying and quantifying the
species in an unknown mixture.8 However, identifying species in
highly complex mixtures remains a key challenge because these
mixtures may contain many unknown analytes whose signals
overlap. Semi-differentiation can be a valuable tool in resolving
signals in highly complex, multi-component mixtures. In molten
salts, semi-differentiation has been applied to separate and analyze
overlapping reduction peaks for U3+ and Pu3+;9 La3+ and Gd3+;5

U3+ and Mg2+;10 Nd2+ and Nd3+;11 U3+, Mg2+ and Gd3+;3 Ti and
Nb ions;12 W oxides;13 and lanthanum ions,14 though this list is not
exhaustive.

The semi-derivatives of electrochemically reversible and electro-
chemically irreversible (hereafter referred to as reversible and
irreversible, respectively) soluble-soluble electrochemical reactions
in potential sweep voltammograms has been established for
decades.15–17 In contrast to the maturity of semi-differential analysis
for soluble-soluble reactions, a well-established theory for soluble-
insoluble electrochemical reactions has yet to be realized. Tylka
et al. have posited a potential solution for reversible, soluble-
insoluble peaks in potential sweep voltammograms, but it consisted
of a cursory derivation and was not rigorously validated against
experimental data.9 Despite this initial contribution, demonstrated
improvements in signal resolution, and the growing use of semi-
differential CV analysis, the semi-derivative of soluble-insoluble
reactions is still not well understood. This paper rigorously derives
and validates the theoretical framework for semi-differentiated peaks
in CV and LSV for reversible, soluble-insoluble reactions and seeks

to improve the electrochemist’s understanding of the semi-derivative
mathematical operator to enable broader and more consistent
adaptation of semi-differential analysis to soluble-insoluble reac-
tions.

Theory

The semi-derivative operator (a
1/2) can be misapplied because

fractional calculus operators are unfamiliar. In our experience,
newcomers often overestimate similarities between ,1 commonly
notated as ∂/∂x), while also underestimating similarities between 
a
m), which operates on a function, f(x), in the following manner:

f x
m

f a x a f t x t dt
1

1
1a

m m

a

x

m
⎛

⎝
⎜

⎞

⎠
⎟ ∫( ) =

Γ( − )
( )( − ) + ( )( − ) [ ]− ′ −

where m is the order of the differentiation and must be a positive real
number; a is the initial point from which you consider the function f
(x); Γ is the gamma function, which can be thought of as a
continuous factorial function; and x is the point at which you are
evaluating a

mf(x). Notice that the semi-derivative at x is dependent
on the slope and magnitude of f(x) not only at x, but everywhere
from a to x. On this domain, a fractional derivative has a sense of
memory.

To demonstrate several properties of the semi-derivative, the
operators0 (which returns the original function it acts upon),0

1/2,
π

1/2, and 1 are applied to the functions f(x) = sin(x) and g(x) =
sin(x) + 10. The solutions of these operations are given in Table I
and shown graphically in Fig. 1. Although zero is not a valid m for
Eq. 1, the identity operation is trivial.

In Fig. 1, one can observe how the operatora
1/2 is a hybrid of

0 and 1. In Fig. 1 (top), this behavior is manifested as a -π/4 phase
shift instead of the 0 and -π/2 shifts for 0f(x) and 1f(x),
respectively. In Fig. 1 (bottom), this hybrid behavior is manifested
in the dependence of a

1/2g(x) on 0g(x) and 1g(x).
Both Figs. 1 (top) and 1 (bottom) demonstrate the impact of the

choice of a. In Fig. 1 (top), this behavior is manifested by a
difference in magnitude between 0

1/2f(x) and π
1/2f(x). Figure 1

(bottom) also shows a greater difference in magnitude initially and
clearly demonstrates a difference in phase shift between 0

1/2g(x)
andπ

1/2g(x). These effects diminish as x diverges from a. Hence, in
semi-differentiation, the initial point (a) matters, in addition to the
magnitude and functional form of the original function.zE-mail: wtylerb@byu.edu
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The properties of a
1/2, demonstrated in this section, indicate

that for the best agreement between theory and experiment, current
(i) vs potential (E) curves should match theoretical assumptions as
closely as possible. For the Berzins-Delahay model, which is
typically used to evaluate soluble-insoluble electrochemical reac-
tions, these assumptions are: (1) no initial current (i(t=0)=0), (2) the
peak begins at the equilibrium potential (E(t=0) = Eeq), (3) semi-
infinite linear diffusion, and (4) activity of reduced species (i.e.,
deposit) is constant and equal to one.19 Therefore, i vs E curves
should be corrected to remove background (e.g., non-faradaic)
current and cropped to only show data after Eeq.

Semi-differentiated reversible linear sweep voltammograms.—
A notation system is helpful when discussing semi-differentiated CV
or LSV curves for soluble-insoluble pairs. While the semi-derivative
for the soluble-soluble pair has a distinguishing feature (i.e., a peak),
it does not for the soluble-insoluble pair. Therefore, in this work,
subscripts reference the original curve, even when used with the
semi-integrated current (m) or the semi-differentiated current (e). In
terms of potential, these subscripts reference the equilibrium
potential (Eeq); the peak potential (Ep), where i experiences a peak
(ip) during CV or LSV; the half-peak potential (Ep/2), where ip/2 is
experienced on the front half of a peak; and the reversible half-wave
potential (E1/2), the potential where half of the diffusion limited
current (id) is experienced during sampled-current voltammetry.
Table II lists useful theoretical relations that can be used to find or
calculate distinguishing features of CV or LSV plots. Note that the
soluble-insoluble relations are only valid for a system that satisfies
the same assumptions of the Berzins-Delahay equation.

The symbols in Table II are assigned the following meaning: E0’

is the formal potential, R is the ideal gas constant, T is the absolute
temperature, n is the number of exchanged electrons, F is Faraday’s
constant, D is the diffusion coefficient, C0 is the standard reference
concentration of 1 M, C* is the bulk concentration, C is the
concentration at the electrode surface, and subscripts O and R
indicate the oxidized and reduced species, respectively.

Soluble-soluble theory.—A review of the derivation of semi-
differentiated current for the soluble-soluble system can provide key
context and rationale to understanding the derivation of the soluble-
insoluble system. Goto and Ishii15 derived an expression for the
reversible soluble-soluble semi-derivative peak by rearranging the
following relation developed by Goto and Oldham:23

E t E
RT

nF
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m

m t
1 2d
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⎞
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( ) = +
( )

− [ ]/

where md is the diffusion limited semi-integral current (md =
nFACO

*DO
1/2) and A is the area of the working electrode (WE).

Equation 2 was derived by assuming semi-infinite linear diffusion
and electrochemical reversibility. By solving Eq. 2 for m, Goto and
Ishii15 obtained the following equation for the semi-integral current:

m t
nFA

D C tanh
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2
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2
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Note that signs in this work maintain the IUPAC convention of
reduction currents being negative. For LSV scanning negatively, a
potential ramp function starting at equilibrium, E(t) is given by:

E t E t 4eq ν( ) = − [ ]

where ν is the scan rate and t is time, which is substituted into Eq. 3.
After taking the derivative, Dalrymple-Alford et al.16 derived the
expression:

e t
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RT
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4 2
5o
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2 2
1 2 2
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/

The peak, or minimum, of Eq. 5 occurs when E = E1/2.
16 Therefore,

the semi-differentiated peak potential is E1/2, and the semi-differ-
entiated peak height (e1/2) is

e
n F AC D

RT4
. 6o O

1 2

2 2 1 2*ν
= − [ ]/

/

In the literature, e1/2 is often notated as ep. However, in this work,
subscripts reference the original curve, not the semi-differentiated
curve. Dalrymple-Alford et al.16 found that the peak full-width at
half maximum (wp/2) is 3.53 RT/nF.

Table I. Solutions to various operations on f(x) = sin(x) and g(x) = sin
(x) + 10.

f x0 ( ) xsin ( )
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1 2 ( )/
t x t dtcos
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1 2
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Figure 1. A series of operators applied to f(x) = sin(x) (top) and g(x) = sin
(x) + 10 (bottom).
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Soluble-insoluble theory.—For soluble-insoluble pairs, the treat-
ment above is no longer valid. Under these circumstances, the
reduced species is insoluble, therefore DR does not exist and Eeq =
E0’ + RT/(nF)ln(CO/C

0). This equation assumes that the activity of
the reduced species is equal to one (i.e., a pure coating of the
insoluble species on the WE). Tylka et al.9 assumed that the semi-
integral current can still be related to the concentration of the
oxidized species by:

m t nFAD C C . 7O O o
1 2 *( ) = ( − ) [ ]/

Since Eq. 7 is derived from the semi-integration of Fick’s first law,24

it is reasonable to assume its application as long as the reaction is not
kinetically controlled and diffusion is the dominant form of mass
transport. After combining Eq. 7 with the expression for Eeq, Tylka
then found that:

m t nFAC D exp
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RT
E t E1
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2
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1 2
1 2
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*( ) = − − ( ( ) − ) [ ]/
/

Tylka et al. then differentiated Eq. 8 to obtain the semi-differentiated
current. In this work, a slightly different expression is derived by
substituting Eq. 4 into Eq. 8 then differentiating.

e t
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RT
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RT
E t E

2
9o O
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2 2 1 2

1 2{ }* ν
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/

/

Using the expressions for Eeq and E1/2 in Table II for soluble-
insoluble reactions, Eq. 9 can be transformed into

e t
n F AC D

RT
exp

nF

RT
t 10o O

2 2 1 2 { }* ν
ν( ) = − (− ) [ ]

/

and the following relations for e at different points of the curve can
be determined:

e
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e
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RT
0.4257 12p

O O
2 2 1 2*ν
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/

Equations 11 and 12 are proportional to A, CO
*, and DO

1/2. This
allows researchers to develop functions for quick calculations of A
(e.g., electrode depth), DO, and CO from the semi-differentiated
current.8

Equations 8–12 were derived using identical assumptions to the
Berzins-Delahay equation. Therefore, they are less accurate when
depositing on a foreign substrate and t is low because a complete

monolayer of the deposit may not have formed yet. When depositing
onto a foreign substance, Eq. 12 is recommended over Eq. 11 as the
most reliable model because historical effects of the semi-derivative
decrease and the deposit coverage on the WE increases as the initial
point becomes more distant (i.e., the peak occurs later than the half-
wave).

The theoretical and mathematical consistency of Eq. 10 is
verified by applying the Riemann-Liouville fractional integral
operator:18

J f x f t x t dt
1

m
13a

m

a

x

m 1∫( ) =
Γ( )

( )( − ) [ ]−

where m is the order of integral and must be given in a positive
value. When Eq. 13 is applied to Eq. 10. with a = 0 and m = 1/2, the
solution is the Berzins-Delahay equation:19
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An explanation of the exponential form of the solution.—Semi-
differentiated currents from potential sweep voltammograms for
electrodeposition (i.e., soluble-insoluble reactions) in the literature
have manifested peaks, not exponential decays, when employing a
foreign substrate as a WE.3,5,9–14 At least some of the peak behavior
occurs because when depositing onto a foreign substrate, the activity
of the deposited layer is not equal to one initially.20 Consider Fig. 2,
where the dimensionless current (Ψ) of two theoretical models and
their semi-derivatives (1/2Ψ) are compared using the same system
parameters (ν = 1 V s−1, n−1 = 1, T = 298 K, DO = 5 × 10−5 cm2

s−1, CO
*= 3.53 mM). The dimensionless current (Ψ) was calculated

using the definition from Fatouros et al.

i

nFAC

RT

nF D
. 16

O O

1 2
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⎤
⎦⎥* ν

Ψ = [ ]
/

ΨF (subscripted F for Fatouros) was taken from Figure 5b of
Fatouros et al.’s work25 using WebPlotDigitizer26 and accounts for
deposits with initial non-unit activity. ΨBD (subscripted BD for
Berzins-Delahay) is the dimensionless form of Eq. 14 and assumes
constant unit activity of the deposit. 1/2ΨT is Eq. 10 normalized by
Eq. 16, where e is substituted for i (1/2Kf(x) = K1/2f(x)). 1/2ΨT

and 1/2ΨBD are exponential curves that agree well, which

Table II. Useful potential relations.
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E E
RT

nF
ln

C

C
eq

O

R

0
⎜ ⎟
⎛
⎝

⎞
⎠

= +′ E E
RT

nF
ln

C

C
eq

O0
0

⎛
⎝

⎞
⎠

= +′

E E
RT

nF

2.2
p p 2∣ − ∣ =/ E E

RT

nF

0.774
p p 2∣ − ∣ =/

E E
RT

nF

1.109
p 1 2∣ − ∣ =/ E E

RT

nF

0.8540
p eq∣ − ∣ =

E E
RT

nF
ln

D

D
R

O
1 2

0
1 2

⎜ ⎟
⎛

⎝
⎡
⎣⎢

⎤
⎦⎥

⎞

⎠
= +/

/
′ E E

RT

nF
ln

C

C2
O

1 2
0

0
⎜ ⎟
⎛
⎝

⎞
⎠

= +
*

/
′ a)

a) This relation was given by Tylka et al. without citation or derivation.9

A derivation is supplied here in the appendix. Figure 2. Calculated dimensionless currents and their semi-derivatives. E1/2

and Ep are depicted by vertical lines with a lighter tone than their associated
curves. Dotted lines depict E1/2 and solid lines depict Ep.
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graphically shows the mathematical consistency of Eq. 10 with
Eq. 14. However,1/2ΨF forms a peak.25 Nevertheless, all the semi-
derivatives agree well at both theoretical (pink vertical lines) and
experimentally observed (gray vertical lines) values of E1/2 and Ep.
The comparison of 1/2ΨF, 

1/2ΨBD, and 
1/2ΨT demonstrate that

peaks in semi-differential analysis can result from the initial non-unit
and varying activity of the deposit.

Figure 2 demonstrates that the theoretical semi-derivative (
1/2ΨT) relations derived and presented in this paper are not optimized
for deposition onto a foreign substrate (ΨF) because the same
assumptions as the Berzins-Delahay equation (ΨBD) are made.
Therefore, potentials of ΨT (i.e., Ep and E1/2) are referenced to the
theoretical values of ΨBD (see Table II), not to ΨF. If the
experimentally observed values of Ep and E1/2 (gray lines in
Fig. 2) are used as a reference with Eqs. 11 or 12, CO

* or DO would
be underestimated. A detailed exploration of the analytical errors
due to using the Berzins-Delahay equation for deposition onto
foreign substrates is explored further elsewhere.27

Both the unit activity (BD) model and non-unit activity (F) model
agree remarkably after the peak of 1/2ΨF in Fig. 2. However, a
reference point consistent with theory needs to be used to utilize
Eqs. 11 and 12. Hence, if E0’ and CO are known, accurate values of
DO can be calculated using Eq. 12 if Ep is theoretically calculated
from Table II, rather than using the peak of the measured i vs E
curve. However, the theoretical value of Ep cannot be calculated
without a known CO. Hence, an iterative approach must be used
where CO is calculated from semi-differentiated current, then Ep is
calculated, and CO recalculated at the calculated Ep value. This is
repeated until Ep and Co no longer change between iterations. The
experimentally observed Ep can serve as an initial guess to the
iterative approach. Accurate calculations of Do and Co can be made
using the semi-differentiated current, but not from the peak of the

semi-differentiated current. This peak does not have a developed and
validated theoretical relationship, which is beyond the scope of this
work and is planned to be addressed in a future study.

Methods

Computation.—Python 3 was used to calculate semi-derivatives
by means of the differint Riemann-Liouville packages. These
packages can calculate semi-derivatives and semi-integrals from
data or user-defined functions. For the reader’s benefit, example
code is provided in the supplemental data.

Electrochemical experiments.—To evaluate the utility of the
theoretical models formalized in this paper (Eqs. 10–12) in the case
of non-unit activity deposits, DO values were calculated using the
Berzins-Delahay equation (Eqs 14–15) and Eqs. 10–12 using
experimental data and compared to each other. To demonstrate the
theoretical model’s broad applicability, experiments were conducted
in both aqueous and molten-salt environments, depositing Ag
(n = 1), Ni (n = 2), and La (n = 3) onto foreign substrates. Ag
deposition on Pt was performed in an aqueous solution. Ni and La
deposition tests were performed in separate molten LiCl baths with
0.419 wt% NiCl2 and 0.433 wt% LaCl3, respectively, onto a 1.5 mm
W rod WE. Previous works report some of the voltammograms for
Ni and La for ν from 50 to 2000 mV s−1 and extensively detail the
experimental setup.28,29 CV measurements involving Ni and La were
performed using a three-electrode set up (all made of W) and an
Autolab (PGSTAT302N) potentiostat with NOVA 2.1 software, in
which the CV (digital) staircase command was used with a potential
step of 1 mV. To verify that the data was repeatable, three or more
scans were conducted at each ν value.

Ag deposition studies were conducted in a 0.027 M AgNO3

(VWR, 99%, Part No. 0377–25 G) and 1 M HNO3 (Fisher Chemical,
68.0–70.0 wt%, Part No. A200–500) aqueous solution where Ag
ions were deposited onto 5 mm diameter platinum disk (Pine
Research, 99.99%, Part No. AFE3T050PT) WE, with a 0.64 mm
diameter Ag wire (Alfa Aesar, 99.9%, Part No. 41390) quasi-
reference electrode. The water was purified to 16 MΩ cm using a
Thermo Scientific Barnstead D4631 3-Holder Water Purification
System. The counter electrode was a coiled Cu wire coated with 0.02
inches of Nb wire, which in turn was coated with 0.0001 inches of Pt
(Anomet Products). Electrochemical impedance spectroscopy (EIS)
was used to measure the solution resistance at the open-circuit
potential with 100,000 to 0.1 Hz and an amplitude of 10 mV. CV
measurements were then compensated at 90% of the solution
resistance value (7.24 Ω) determined by EIS. CV measurements
were performed using an Autolab (PGSTAT302N) potentiostat with
NOVA 2.1 software, in which the CV (digital) staircase command
was used with a potential step of 2.44 mV for Ag electrodeposition.
CV was applied with ν between 75 mV s−1 and 2000 mV s−1 to
determine the reversible region and calculate DO.

As previously mentioned, data should be corrected to match
theoretical assumptions of no initial current and an initial potential at
the equilibrium potential. The former requirement was achieved
without correction due to low charging currents, the later was tested
by either calculating the semi-derivative of the entire data set or only
of data following Eeq to demonstrate the importance of this
requirement. Eeq was determined from Ep by using the relations in
Table II.

Results

Silver deposition.—The silver deposition peak currents and
potentials from cyclic voltammograms for reversible values of ν
are shown as dots in Fig. 3 for silver deposition on the Pt WE. As
can be seen, Ep was within a ±10 mV range and not a strong function
of ν for the ten lowest ν values (⩽0.5 V s−1). Figure 3 also shows
that ip was strongly linear with ν1/2 for these same ν values.
Therefore, the system was deemed to be reversible up to at least
0.5 V s−1. Hence, only data from the ten lowest ν values was used in

Figure 3. CV peak value correlations for ip vs ν
1/2 (top) and Ep vs log10(ν)

(bottom) of Ag(I) deposition onto Pt disk. Dots represent data analyzed in
this work, the letter “x” denotes data not analyzed in this work, and dotted
red lines represent a fitted line (top) and average value (bottom) of the
analyzed data.
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the analysis hereafter. DO was calculated to be 2.3 ± 0.2 × 10−5 cm2

s−1 from the slope of ip vs ν
1/2 (dashed, red line in top plot of Fig. 3)

using the following equation developed by Berzins and Delahay by
evaluating Eq. 14 at its minimum.

i AC
nF D

RT
0.6105 20p o

O
3 1 2

⎡
⎣⎢

⎤
⎦⎥

* ν= − ( ) [ ]
/

Experimental validation of derived semi-differentiated cur-
rent.—To evaluate the agreement between experimental data and
the theoretical curve (Eq. 10), consider the semi-differentiated
voltammograms shown in Fig. 4. Around E1/2, the theoretical

semi-differentiated current (e), and the semi-differentiated current
for the entire scan (Es

1/2i) and the cropped scan (Eeq
1/2i)

converged. This behavior was consistent regardless of ν or n.
These voltammograms also demonstrate that for the soluble-inso-
luble pair, unlike the soluble-soluble pair, a peak does not occur at
E1/2 or any other consistent potential reference.

In Fig. 5, the linear relationship between ν and ep is demon-
strated. Mean ep values and their 95% confidence intervals were
calculated from the second, third, and fourth scans of each cyclic
voltammogram. This figure also demonstrates the agreement be-
tween Eq. 12 and semi-differentiated data, despite the shifts in Ep

due to depositing onto foreign substrates (see gray lines in Fig. 2).

Figure 4. Comparisons of semi-differentiated i vs E curves using Eq. 10 (e),
experimental data from the whole scan (Es

1/2i), and data cropped to Eeq (
Eeq

1/2i). 0.027 M AgNO3 in aqueous 1 M HNO3, DO = 2.3 × 10−5 cm2 s−1,
A = 0.2 cm2, T = 298 K, n = 1, ν = 300 mV s−1, Pt WE (top). NiCl2-LiCl.
CO

*= 4.73 × 10−5 mol cm−3 (0.419 wt%), DO = 3.61 × 10−4 cm2 s−1, A =
0.66 cm2, T = 974 K, n = 2, ν = 1000 mV s−1 (middle). LaCl3-LiCl, CO

*=
2.59 × 10−5 mol cm−3 (0.433 wt%), DO = 3.42 × 10−4 cm2 s−1, A = 0.66
cm2, T = 971 K, n = 3, ν = 2000 mV s−1 (bottom).

Figure 5. Comparisons of ep values from semi-differentiated i vs E curves
using Eq. 10 (ep), experimental data from the whole scan (Es

1/2ip), and data
cropped to Eeq (Eeq

1/2ip). 0.027 M AgNO3 in aqueous 1 M HNO3, DO = 2.3
× 10−5 cm2 s−1, A = 0.2 cm2, T = 298 K, n = 1, Pt WE (top). NiCl2-LiCl.
CO

*= 4.73 × 10−5 mol cm−3 (0.419 wt%), DO = 3.61 × 10−4 cm2 s−1, A =
0.66 cm2, T = 974 K, n = 2 (middle). LaCl3-LiCl, CO

*= 2.59 × 10−5 mol
cm−3 (0.433 wt%), DO = 3.42 × 10−4 cm2 s−1, A = 0.66 cm2, T = 971 K,
n = 3 (bottom).
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To further verify this, DO was calculated using Eq. 12 for each
system. Using cropped scans, the mean DO values with 95%
confidence intervals are 0.20 ± 0.01, 3.43 ± 0.15, and 3.08 ± 0.24 ×
10−4 cm2 s−1, for Ag, Ni, and La, respectively. These calculated
values agree quite well with those calculated from the Berzins-
Delahay equation: 0.23, 3.61, and 3.42 × 10−4 cm2 s−1 for Ag, Ni
and La, respectively.28

When comparing calculated DO values from ep and e1/2, cropped
data could not be used because of insufficient data resolution (i.e. for
some scans, there were no data points between Eeq and E1/2).
Therefore, these diffusion coefficients were calculated using data
from the entire scan. DO from ep for Ag, Ni, and La were 0.20 ±
0.01, 3.26 ± 0.12, and 2.75 ± 0.22 × 10−4 cm2 s−1, respectively.
Values calculated from e1/2 were 0.22 ± 0.04, 9.83 ± 1.33, and 4.51 ±
0.39 × 10−4 cm2 s−1, respectively. Comparing these DO values with
those calculated from the Berzins-Delahay equation demonstrates
the superior consistency of using the ep correlation (Eq. 12) instead
of that belonging to e1/2 (Eq. 11). As mentioned, this is likely due to
the diminishing effects of history on the semi-derivative as the
independent variable moves forward and more complete coverage of
the foreign substrate by the deposit.

Discussion

Because of the impact of history on the semi-derivative, the use
of semi-differentiation for decoupling overlapping peaks needs to be
carefully evaluated. Future work will investigate and extend the
developed semi-differentiation theory for soluble-insoluble reactions
to deposition onto foreign substrates and overlapping peaks. In this
paper, the usefulness of semi-derivative peaks has been called into
question. If there is analytical utility in peak characteristics, it will
likely contain information associated with adsorption processes in
addition to concentration, thermodynamic, mass-transfer, and kinetic
information.

Conclusions

A theory for the semi-derivative for a soluble-insoluble reaction
in potential sweep voltammetry was formalized and demonstrated to
be theoretically consistent. The derived equation does not predict a
peak because the initial non-unit activity of a deposit onto a foreign
substrate is ignored in the derivation. When data for deposition onto
foreign substrates are properly sampled (i.e., at E1/2 or Ep) to
minimize the impact of the non-unit activity of initial deposits, the
semi-derivative current agrees well with theoretically predicted
values. When the theoretical assumptions (i.e., i(t=0)=0 and
E(t=0)=Eeq) are met, the semi-derivatives take on an exponential
decay form and converge with the theoretical response. The semi-
derivative for soluble-insoluble peaks is given with relations that
reference well-defined features of CV plots. The derived semi-
derivative predicts DO values that agree with those calculated from
the Berzins-Delahay equation.
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Appendix

To calculate E1/2 for a soluble-insoluble pair, begin with Fick’s
second law and the following conditions:

C x t
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2

2

∂ ( )
∂

= ∂ ( )
∂

[ · ]
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which results in the following equation when transformed into
Laplace space:20
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At the electrode, Eq. A∙4 is

C s
C

s
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O*( ) = + ( ) [ · ]

Next, transform the Nernst equation for the soluble-insoluble pair,
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into the Laplace space
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Equations A∙5 and A∙7 are then combined to find A(s),
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which when plugged into Eq. A∙4, creates
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The Laplace space current (I) is related to Eq. A∙9 by
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The function is evaluated by rearranging Eq. A∙10 and taking the
derivative of Eq. A∙9 with respect to x
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whose real space form is
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The real space current is then
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whose diffusion limited form is
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which by combination with Eq. A∙14 and rearrangement yields
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