Taken from my dissertation: D.S. Rappleye, Electrochemical concentration measurements for multianalyte
mixtures in simulated electrorefiner salt, Ph.D., The University of Utah, 2016. https://www.proquest.com/
docview/1839262770/abstract/ A450A0502B7F4E53PQ/1 (accessed March 28, 2022).

2. ELECTROCHEMISTRY

About 230 years ago, an anatomist, Luigi Galvani, accidently touched his steel
scalpel to a brass hook holding a frog leg in place. Upon contact, the frog leg twitched
and the first observation of electrochemistry was made in a laboratory. Galvani chalked it
up to biological processes that he termed “animal electricity.” Meanwhile, Alessandro
Volta replicated his experiments and contended that the electricity was generated by the
two dissimilar metals, not from some process inside the animal. He demonstrated his
theory by building voltaic piles, essentially alternating metal plates sandwiched by
cardboard soaked in salt water. Both were right. Galvani’s approach gave birth to
neurophysiology, while Volta’s approach made him the father of modern day
electrochemistry (57).

The voltaic pile was the first form of continuous electric current, a necessity for
the development of electrochemistry and most modern technologies. A string of scientists
picked up Volta’s work, and the field of electrochemistry has grown to include
applications in almost every field. To describe the behavior of ions in electrochemical
cells, electrochemistry blends three fundamental subjects: (1) thermodynamics, (2)
reaction kinetics, and (3) mass transport. From these fundamental matters, all
electrochemical relations and techniques are derived. To facilitate the discussion of the
fundamentals matters in the context of electrochemistry, some general terms and concepts

of electrochemistry need to be introduced.
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2.1. General Overview

Electrochemical studies are usually carried out in an electrochemical cell. An
electrochemical cell consists of four main components: a power supply, an anode, a
cathode, and an electrolyte. The power supply drives the reaction. Material is oxidized at
the anode and reduced at the cathode. The electrolyte serves as a conducting medium to
allow the flow of ions in the cell. In electroanalytical work, the power supply is replaced
by a potentiostat which can manipulate and measure the potential and/or current at an
electrode. This electrode is called the working electrode (WE) and can function as either
the anode or cathode depending upon the conditions imposed. A counter electrode (CE)
serves as the other electrode to close the electrochemical circuit. An additional electrode
called a reference electrode (RE) is commonly used in electroanalytical work. The RE
provides a stable potential to which the WE can be compared or referenced. In molten
LiCI-KCl eutectic, the RE is commonly based on the silver-silver chloride (Ag/AgCl)
redox couple or a chlorine ion and gas [CI/Cl, (1 atm)] redox couple.

Typically, electroanalytical techniques are interested in the reaction of a certain
species, called an analyte, that liberates (oxidation) or consumes (reduction) electrons at
the WE. These reactions are generally represented by the following reaction and written

so that the forward reaction is the reduction reaction.

Ox+ne < Red (2.1)
In molten LiCl-KCl eutectic, the analyte is usually a monoatomic metal ion, which

applied to (2.1) results in the following equation
M"™ +(n—p)e oM™ (2.2)

Of primary concern, in this work, is the reduction of metal ions to metal in the zero
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valance state or the reverse reaction of oxidation from metal to a metal ion. Applying the
assumption of zero valance state to (2.2) (i.e., p = 0), the equation simplifies to the
following expression
M" +ne &M (2.3)

The current flowing in an electrochemical cell can be a result of two processes:
faradaic or nonfaradaic. A faradaic process involves the transfer of electrons across the
electrolyte-electrode interface, like the reactions previously discussed. Nonfaradaic
processes do not transfer electrons, such as adsorption and desorption of ions or double-
layer (capacitive) charging. Hence, Faraday’s law cannot be applied to these processes.

The potential applied to a cell or an electrode can drive a reaction to occur if the
voltage is sufficient. However, a portion of the applied potential is devoted to
overcoming resistances, the most significant often being solution resistance. This loss of
or drop in applied voltage is referred to as ohmic or IR drop and can be calculated with
Ohm’s law:

E=IR, (2.4)

If the ohmic drop is uncompensated and significant, then it can introduce errors in

measurements and analysis.

2.2. Thermodynamics
Thermodynamics provides information concerning the possibility of a certain
reaction or phase formation. Typically, the spontaneity of a reaction is determined using

the change in Gibbs free energy (AG) which can be calculated as follows:

AG=AG’ +RTIn(Q) (2.5)
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where Q is the reaction quotient which is the product of the activity of products raised to

their stoichiometric coefficient divided by the product of the activity of the reactants
raised to their stoichiometric coefficient. In electrochemistry, a reaction typically
involves oxidation or reduction via electron transfer. If (2.5) is adapted for (2.3), it

becomes the following equation

a,.

AG = AG” + RTln(aM‘“ J 2.6)
The activity of an electron in a metal “can be disregarded because the electron
concentration never changes appreciably” (52).

In electrochemistry, it is more convenient to work with potential (E') than AG. The
reversible (infinite resistance) potential is related to AG by the charge passed, as shown
below

AG =-nFE 2.7)
The negative sign is due to the electrochemical convention that a positive potential

corresponds to a spontaneous process. Combining (2.6) and (2.7) results in the Nernst

equation:

nkF a

a ..

E:Eo_ﬂm[ u } o8
MII+

The potential obtained with this equation can be considered the equilibrium potential or

open-circuit (i.e., I = 0) potential of a redox reaction. The activity can be defined by

(2.9) and (2.10)

a=yx 2.9)
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C
CO

a=y, (2.10)

If p = 0 in (2.8) and the reduced metal does not interact with the electrode or another
reduced metal, then its activity can be assumed to be one. However, if multiple metals are
deposited and form an alloy, then activity cannot be assumed to be one. In molten salt
electrochemistry, (2.9) is prevalently used. C? is the concentration at which the standard
reduction potential (E?) is defined which is commonly 1 molal (53). It is common for the
activity coefficient to be grouped with E° to form the apparent or formal standard

reduction potential (E°")

g =g B | T @.11)
nk’ Ay, .

Thus, E°' is only constant if the activity coefficients do not depend strongly on
composition over the concentration range of interest. Again, if p = 0, then activity

coefficient is assumed to be unity unless an intermetallic forms in the deposit.

2.3. Reaction Kinetics
For a single-step, elementary reaction, its net rate is given by the resulting law as
applied to (2.3)

r=k.C , —kC (2.12)

f M MPt
Rate constants are known to have an Arrhenius relationship with temperature and

activation energy

E,

k= Ae kT (2.13)
If the reaction is occurring in a condensed phase, then activation energy can be related to

a “standard Gibb’s free energy of activation” (52) which can be related to potential, as
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expressed in (2.14) and (2.15)

_ K exp|:— OZ’f (E—E"')} (2.14)

=k p{%(“ﬁ} @19

The transfer coefficient () accounts for the amount of the potential that promotes the
reduction (forward) reaction. The standard rate constant (k) is the forward and backward
rate constants at equilibrium under the special conditions that E = E°’ and the bulk
concentrations are equal (C Alj,n+ =C Alj,p+). If (2.14) and (2.15) are substituted into (2.12)
and Faraday’s law is applied (I = nFAr), then the faradaic current related to the reaction

in (2.3) is given by (2.16)

I =nFAk® (CMM eXp[—%(E—E”')}—CMW exp {%(E—E)D (2.16)

This expression is very useful, but can be expressed more conveniently. This is done by
introducing a term called the exchange current density (i, ). This is derived by evaluating

(2.16) at equilibrium (i.e., I = 0) and results in the equation below
i, =nFak(C’,.) () (2.17)

Substituting (2.17) into (2.16) and multiplying by negative one yields the current-

overpotential relationship in the [IUPAC convention (53)

C,. |(=a)nF | C,. anF }
=i | 2 ex — M exp| — 2.18
[ o p{ RT 77} c p{ rvad (2.18)

If the surface and bulk concentrations are assumed to be equal, (2.18) simplifies to the

more common Butler-Volmer equation. The overpotential (1) is defined as the offset of
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potential from the equilibrium potential

b
M

. c’ .
UEER_;I( s J 2.19)

2.3.1. Metal Electrodeposition Kinetics

In the case of p = 0, a metal is deposited onto the electrode. In this case, the
concentration of reduced metal (C),) becomes a common term in the derived kinetic
expressions because most literature assumes that the reduced product is soluble when
deriving kinetic expressions. However, this can be confusing because most metals are
insoluble in molten salts and other electrolytes. Various methods of handling the
deposited metal concentration have been proposed when deriving the kinetic expressions.
The simplest approach is to assume that the bulk and surface concentration of the
deposited metal are the same (54). Another option is to use the standard concentration as
a “scaling concentration” (55). However, the first approach only resolves the problem in
a few situations and neither approach may hold when two metals deposit and alloy with
each other. A more general, albeit more complicated, approach derives an alternative
current-overpotential relation by starting with a slightly different rate law (56):

R=k.a . —ka, (2.20)

S
By following the same steps in the previous derivation in Section 2.3, this
modification of the current-overpotential relation is derived in the American or
polarographic convention (56):

=i (a?)w exp [_ anF 77} _a—fexp {(Hﬂ UD 2.21)

a RT a,, RT

M

where the modified definitions of i, and 7 are given in (2.22) and (2.23).
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i, =nFAk®(a’,. )" (a )" (2.22)
b
n=E—E + 2L || (2.23)
nk a .

In this case, activity of the metal deposits can be assumed to be one if the metal deposits
are pure. This assumption is not valid when less than a monolayer of a metal is deposited
on a foreign substrate or when two metals deposit and interact to form a metallic solution.
In such cases, the activity of the metals would need to be determined for (2.21) to be
applied. A simple model for activity of a monolayer of metal is that the activity of the
metal is proportional to the fraction of the electrode surface covered by the metal (52)

4
ay =P (2.24)

However, this ignores nucleation effects which are common for deposited metals. For co-
deposition of two metals, this would require significant study of the metal-metal
interactions under the electrochemical cell conditions to determine the activities of

metals.

2.4. Mass Transport

The kinetic expressions in (2.18) and (2.21) have two separate terms for
concentrations or activity in the bulk and at the electrode surface illustrating that the
conditions are different at the surface of an electrode than in the bulk solution. These
differences are the result of mass transport mechanisms, namely diffusion, convection,
and migration. All of these mechanisms are encapsulated in the flux (j) of an ion.

The flux is driven by the difference in the electrochemical potential (i) which is

related to the chemical potential ().
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fi=p’ +RTIn(a)+nF¢ (2.25)

The last term accounts for electrical properties of the ion’s environment and is related to
the charge of the ion and absolute potential (¢) of the ion’s location. Ions in a solution
will move or generate a flux to relieve gradients in the electrochemical potential. Thus
molar flux can be calculated from the gradient of electrochemical potential and any
convective flow

CD
i=———Vi+Cy 2.26
J==%r VH (2.26)

Substituting (2.25) into (2.26) yields this general equation
. nk
j=—CDV ln(a)—CDEV¢+Cv (2.27)

By introducing a few assumptions to (2.27), it simplifies to the Nernst-Planck equation

j=—p9C_cpltdd ¢, (2.28)
dx RT dx

The assumptions in (2.28) include one-dimensional transport and the equivalence of
activity and concentration. The three terms in equations (2.27) and (2.28) represent first
diffusion, then migration, and lastly convection. Using Faraday’s law (I = nFAj), the
flux can be related to current.

In certain cases, flux equations can be simplified by neglecting migration,
convection or both. The convection term can be neglected in stagnant fluids. The
migration term is less significant at low currents due to a weaker electric field (i.e., lower
overpotentials). The addition of a supporting (i.e., not electroactive) electrolyte can
almost completely remove migration effects. Supporting electrolytes can also reduce the

effects of ohmic drop in the solution. If the convection and migration terms are neglected,
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then the Nernst-Planck equation reduces to Fick’s first law

j= —D‘;—g (2.29)

Fick’s second law is derived from the first law and is the origin of almost every

electroanalytical expression derivation

2
dc_ e
dt dx

(2.30)

Thus, it should be noted that derived electroanalytical expressions in the next section

apply the assumption of a stagnant fluid and negligible migration unless otherwise noted.

2.5. Electroanalytical Methods

Electroanalytical methods are techniques that investigate the behavior of an ion of
interest called an analyte by manipulating potential or current and measuring the other.
Four terms are frequently used when describing electroanalytical techniques:
amperometry, potentiometry, voltammetry, and coulometry. Amperometry controls the
potential, usually holding it steady at one setting, and measures the current. It can be
considered a subclass of voltammetry. Potentiometry measures potential while
controlling the current. Voltammetry, like amperometry, measures current and controls
potential, but voltammetric techniques involve more than fixing the potential at a set
value. It can include scanning the potential or a series of potential steps with a certain
pattern. Coulometry measures the charge under potential controlled conditions and can
affect the bulk characteristics of the electrochemical solution. The first three techniques
are carried out under small A/V conditions meaning that the area of the electrode is small
enough that the current passed does not alter the properties of bulk volume. Coulometric

techniques can pass sufficient current to alter the conditions in the bulk solution.
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As discussed in Section 1.4, the techniques of interest in this project are
chronoamperometry (CA), cyclic voltammetry (CV), open-circuit potentiometry (OCP)
and normal pulse voltammetry (NPV). The derivations of key relations for each of the
listed techniques are reviewed in this section along with key assumptions. These methods
involve applying a waveform and measuring the response which can typically be

described by a derived equation. A summary of each technique is provided in Table 2.1.

2.5.1. Chronoamperometry

CA involves stepping the potential from an initial potential level at which no
faradaic current flows to a potential at which faradaic current flows and is diffusion-
limited. The diffusion-limited current can be determined by solving Fick’s second law

with the accompanying boundary conditions

df;; ~=D .. dzdiz - (2.31)
C,.(x0)=C . (2.32)
imC,,,. (x,t)=Cy,. (2.33)
C,,.(0,t)=0 (2.34)

From (2.31), it is evident that one-dimensional semi-infinite linear diffusion is assumed.
Also, the diffusion coefficient is assumed to be spatially independent and, therefore,
independent of concentration, because concentration is varying with location as
demonstrated by the boundary conditions, (2.33) and (2.34). The time, at which the
potential is stepped, is considered zero (i.e., t = 0) and no faradaic current is flowing.

Thus, metal ions are uniformly distributed throughout the solution as indicated by the



Table 2.1 Summary of electroanalytical methods
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initial condition, (2.32). After the potential is stepped, the concentration of metal ions in
the bulk solution is unaffected, if the small A/V conditions hold. If the potential step is
large enough, the metal ions at the surface will be immediately and completely reduced
resulting in diffusion controlling the rate of reduction.

The solution to (2.31) is obtained by using Laplace transforms and the initial and
boundary conditions which results in a temporal concentration profile. The concentration
profile can be differentiated and substituted into Fick’s first law which can be related to

current by Faraday’s law. This results in the Cottrell equation

I _ b DMn+
(1) =nFAC,. || = (2.35)
T

According to the equation, the current approaches infinity at very short times and zero at
very long times. However, in practice, this is not observed. At longer times, natural
convection can prevent the current from completely decaying away. For metal
electrodeposition, the area can also increase substantially which can cause the current to
depart from Cottrellian behavior. On a short timescale, limitations in the equipment can
prevent measurement and recording of very large currents. Additionally, double layer
charging can significantly distort the current signal at very short times.

To illustrate these important limitations and considerations, a CA measurement as
part of the experiments in this work (mixture D6) is displayed in Figure 2.1 along with
the current predicted by the Cottrell equation. Initially, it can be seen that the potentiostat
and its software is unable to capture the high current predicted by the Cottrell equation.
Then after 1 s, the magnitude of the current ceases to decay and actually grows. This is

due to the growth of metal deposits on the WE, which increases its surface area.
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Figure 2.1 Chronoamperogram at E = -2.08 V vs Ag/AgCI(1 wt%) for mixture D6 (4.69
wt% GdCls, 2.45 wt% LaCls, T = 500°C, Area = 0.35 cm?)

2.5.1.1 Double-Layer Charging

The interfaces between the electrode and solution tend to behave as capacitors due
to excess charges in the vicinity of the interface. When the interface is perturbed from its
initial state, significant amount of the current is consumed by the nonfaradaic process of
charging the double layer. For a potential step, the resulting charging current is given by

the following expression

1(?) =%e—’/m (2.36)

The change in potential or the size of the potential step is represented by AE. The product
of R, and C; is commonly referred to as the time constant. Until the time is equivalent to
5 time constants, the current due to double layer charging cannot be neglected.

The eutectic LiCI-KCl salt has been found to have a resistance from 0.4-2 Q/cm
depending on the analytes present and their concentration based on published results (57—
60). Additionally, the reported capacitance of the double layer in molten LiCI-KCl is 0.1-
2.0 mF/cm? (57,59). The absolute resistance for a particular setup depends upon the
distance between the RE and WE. The absolute capacitance depends on the surface area

of the WE. Two approaches to reduce the effect of capacitive current are, first, to sample
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the current at sufficiently long time that capacitive currents can be neglected and second,
to design your cell to reduce the time constant for capacitive currents. Table 2.2 shows
the variation of the R;C,; (RC) time constant with WE and RE spacing and WE surface
area, if the largest values of 2 Q/cm and 2.0 mF/cm? are assumed for a conservative
estimate of the RC time constant. It should be noted that the reduction of the RC time
constant has practical limitations. For example, too close of spacing could cause shorting

when metal deposits form on the WE or inhibit diffusion of ions to the WE surface.

2.5.1.2 Semi-Infinite Linear Diffusion

Cylindrical electrodes are commonly used for electrochemical measurements in
molten LiCIl-KCl eutectic. If the cylindrical electrode is small enough radially or the
current is sampled for a short enough time, then the semi-infinite linear diffusion
assumption may introduce significant error. To illustrate the possible error that could be
introduced by assuming linear diffusion at cylindrical electrodes, the current response for
CA was calculated for diffusion at a planar electrode using (2.35) and at a cylindrical

electrode at various diameters using the following approximation which is accurate

within 1.3% (52)

Table 2.2 Variation of the time constant (in
ms) with electrode spacing and WE area

Surface Area (cm?)

0.2 0.4 0.6 0.8 1
2 0.2 0.2 0.3 0.5 0.6 0.8
3
0 0.4 0.3 0.6 1.0 1.3 1.6
& 06 0.5 1.0 1.4 1.9 2.4
<
S 08| 06 1.3 1.9 2.6 3.2
2
= 1 0.8 1.6 2.4 3.2 4.0




46

nFADC | 20xp(-0.0547 Dt 1, i
I= + 237
r JarDt/r, In(5.2945+0.7493/4Dt /1, 237

The calculated current responses for planar and cylindrical diffusion at the WE
with a diameter of 0.5 mm are plotted in Figure 2.2. Initially, the current responses are
identical. However, at longer times, the current responses diverge. Thus, if the current
was measured using a 0.5 mm WE and sampled at 1 s, but analyzed using the Cottrell
equation, which assumes planar diffusion, the current would be underestimated by about
10%. This would in turn overestimate the concentration of ions in the molten salt by
11%. As shown in Figure 2.3, the error can be reduced by sampling at shorter times or
using a cylindrical WE with a larger diameter. This could also be resolved by using the
same diameter WE for measuring the diffusion coefficients and determining
concentrations which would effectively embed the error in the diffusion coefficient.

Further analysis of Figure 2.2 reveals another approach that could minimize the
error introduced by using cylindrical WE. If the current is plotted versus the inverse of
the square root of time, then the slope would be proportional to concentration according
to the Cottrell equation. The slopes of both curves are nearly identical (<0.001%) in

Table 2.3. Practically, all of the difference between the curves is found in the y-intercept.

0.1

0.08 - Planar
< 0.06 - - - = Cylindrical
Z 004 )
t ---------
s o0m4{ 0 —T====-=---_
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0 T
0 2 4 6 3 10

Time (s)

Figure 2.2 Calculated current response with planar and cylindrical diffusion for CA
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Figure 2.3 Relative error of the calculated current at a cylindrical WE of various
diameters (0.5-5 mm) as a function of sampling time

Table 2.3 Comparison of the

regressions of current with t~1/2
Planar Cylindrical
Slope Y-int Slope Y-int
0.051642 0 0.051643 0.005713

2.5.2. Cyclic Voltammetry

The general concept of CV is to scan the potential over a range of potential values
at a certain rate and measure the current response. As the potential reaches values at
which species in the solution or on the electrode will react, the changes in the current are
measured accordingly. When the maximum or minimum potential is reached the direction
of the scan is reversed creating a cycle of the potential. A closely related technique called
linear sweep voltammetry (LSV) simply scans in one direction and terminates when the
end potential is reached.

By scanning the potential, a wealth of information is obtained about the system.
However, to extract meaningful quantitative information from CV, the analysis can
become extensive and complex. The derivations of key analytical expressions and their

assumptions are dependent on the standard rate constant of an ion (k?), the scan rate (v)
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and solubility of the reduced species in the electrolyte. The parameter, A, which is the
ratio of intrinsic reaction rate to mass transfer rate, is often used to determine whether the
reaction is reversible, quasi-reversible or irreversible, as shown in Table 2.4. Thus,
reversible processes are characterized by fast reaction kinetics relative to mass transfer,
and irreversible processes are characterized by slow reaction kinetics relative to mass
transfer. Quasi-reversible processes are in between the two extreme conditions and use
certain functions/profiles to blend the reversible and irreversible functions. This
classification of reversibility is specific to electrochemistry and should not be confused
with chemical reversibility. In fact, this kind of reversibility is frequently referred to as
electrochemical reversibility/irreversibility.

Once a system has been properly identified, the appropriate equations can be
applied to characterize the properties of the ions or determine concentrations. These
equations are summarized in Table 2.5. The derivations, assumptions, characteristics and

application of these functions are discussed in the following sections.

2.5.2.1 Reversible

The listed conditions for determining the type of CV define reversibility by the
speed of the electron transfer process relative to the scan rate (v) of the potential. The
rationale is that if electron transfer is fast, then equilibrium is achieved rapidly and can be

assumed at the electrode surface. In such a case, the Nernst equation can be applied

Table 2.4 Criteria for Reversibility, Quasi-reversibility and Irreversibility (67)

Reaction Type Dimensionless For T=773 K, D=10" ecm?/s, a=0.5
Reversible A>15 k° > 0.32v/nv em/s
Quasi-Reversible 15> A > 10720+ 0.32vnv > k° > 2.12 x 1075vVnv cm/s
Irreversible A < 10720+ k° <212 % 107%/nv cm/s
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Table 2.5 Summary of expressions used for CV

Reversible (soluble-soluble) (63) Reversible (soluble-insoluble) (64)
Randles-Sevick Berzins-Delahay
(nF)3D,v (nF)3D,v
=0. _— I, =0.61054 |———C
I, = 0.4463A RT C p RT
RT Dy RT RT RT
E, =E° +—l — |- 1.109— =E% 4+ — - 0. —
» +nF n D, 7 E,=E +nF1n(x0) 0854nF
RT RT
AE, = |E, — Ep 2| =220— AE, = |E, — Ep o =0774—
Quasi-Reversible (soluble-soluble) (61) Irreversible (soluble)* (65)
kO
= Delahay

1-a anFV
P "k RT anFD,v

I, = 0.4958nFA c
I, = L,(rev)K(4, a) P RT
., RT ’DR ~ RT e 1 5o\, anr
Ep—Ea +ﬁln D—O —.:(A,a)ﬁ Ep—E +E<0780+ln( Ko ) b—F
RT RT
AEp = |Ep - Ep/Zl = A(A, a)ﬁ AEp = |Ep - Ep/Zl = 1857w

* An irreversible peak assumes that the potentials are such that anodic processes are negligible

, C ..
E=F° —Eln M (2.38)
nk CM'”

This version of the Nernst equation uses the concentration convention for activity and the
standard apparent potential which includes the activity coefficients. The potential in this

case 1s also a function of time

E=FE —vt (2.39)
For simplicity only the LSV potential function is included here. The CV function only
varies slightly and has been demonstrated elsewhere (62). The steps and assumptions are

identical with only the modified CV function of potential inserted.

2.5.2.1.1 Soluble product. A potential scan can be thought of as a series of
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infinitesimally small potential steps. Hence, (2.31)—(2.33) are applied for the oxidized
species. The last boundary condition, (2.34), is not applied because the small potential
steps do not necessarily produce complete diffusion control. Instead, another boundary
condition is formulated by substituting (2.39) into (2.38) resulting in an equation that can
relate the oxidized and reduced species to one another as a function of time.

Another difference is that the flux of the reduced species needs to be considered,
because the overpotential may not be large enough to neglect it. Thus, boundary
conditions for the reduced species are similar to the oxidized species, except that the bulk
concentration of the reduced species is replaced by zero, if it is initially absent. The sum
of the flux of the oxidized and reduced species is then set equal to zero

D dCM “+D dCM'H 0 2.40
n+ + P+ = .
MT o dx M dx ( )

This is solved using Laplace transforms and results in a function whose maximum (i.e.,

peak current) can be characterized by the Randles-Sevick equation (62,63)

FYD, .
(n)—MVC . (2.41)
RT

M

1, =0.44634

2.5.2.1.2 Insoluble product. However, if the product is a deposited metal which
is insoluble in the solution, there is no flux due to the reduced species which alters the
solution. Since no reduced species is present in the solution, (2.40) is replaced by (2.31).
The initial condition and first boundary condition are (2.32) and (2.33) respectively. The

second boundary condition is formulated from a modified form of (2.38)

. RT
E=E +Eln(CM,H) (2.42)

(2.39) is substituted into (2.42) and solved for Cpn+ to formulate the second boundary
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condition. Again, Laplace transforms are performed to obtain an equation that describes
the reduction peak of the oxidized metal ion. The peak current of the resulting function is

described by the Berzins-Delahay equation (64)

FYD,_.
(n)—TMVC (2.43)

M

1,=0.61054

Both for soluble and insoluble, the Nernst equation is invoked to generate the
needed boundary conditions. Thus, it is assumed that the potential is scanned at a slow
enough rate to allow equilibrium to be achieved at the electrode surface. If k? is large,
this can be achieved at high scan rates. Inevitably, as scan rate increases, the assumption
of equilibrium at the WE surface will become invalid. This is well demonstrated by UCl;
in LiCI-KCl eutectic, as shown in Figure 2.4 which plots the peak current versus the
square root of scan rate from mixture N1 (see Section 3.3.2 and Appendix A for more
details). Initially, the peak current is linear with the square root of scan rate, as predicted
by (2.41) and (2.43). However, between 0.2 and 0.3 V/s, the peak begins to depart from
the linear trend, this is most likely due to the transition from reversibility to quasi-
reversibility (59,66,67). As a result, the peak heights are lower. Thus the limits of
reversibility and irreversibility need to be known and well understood so that the correct

equations are applied to determine concentrations.
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Figure 2.4 Plot of U*" reduction peak height versus square root of scan rate for mixture
N1 (0.83 wt% UCls, WE Area = 0.73 cm”, T =500°C)
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Linearity of peak height with scan rate is insufficient to deduce reversibility. As
seen in Table 2.5, reversible and irreversible expressions are proportional to the square
root of scan rate. The unique feature of electrochemical reversibility is the independence
of peak potential (E,) with scan rate. The half-peak width (AE,,) can also be used to
determine reversibility, irreversibility, or quasi-reversibility. However, at these potentials,
a significant amount of current could be flowing which may require compensation for
ohmic drop to accurately diagnose the reversibility of the system. Thus (2.4) must be
applied to determine the contribution of resistance to the potential at the WE. Once
quantified, that amount needs to be subtracted from the observed or applied peak
potential to obtain the accurate peak potential value.

Neglecting to account for ohmic drop may result in mischaracterizing the reaction
mechanism, as demonstrated for mixture N1 in Figure 2.5, which plots the peak potential
of UCl; in LiCI-KCl at different scan rate with and without accounting for ohmic drop.
The resistance of the salt was measured to be 0.3 Q using the current interrupt method.
When the potential is not adjusted for ohmic drop, it appears that the peak potential is a

function of scan rate. However, if the adjustment is made, peak potential has almost no
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Figure 2.5 Peak potential of U*" with and without adjustment for ohmic (IR) drop for
mixture N1
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trend with scan rate. This adjustment is also required in order to obtain accurate E°’

values from the peak potential.

2.5.2.2 Quasi-Reversible

Quasi-reversible peaks are the most difficult to analyze. The analysis essentially
attempts to characterize the peak by blending the reversible and irreversible functions in
Table 2.5 by using the K, =, and A functions or profiles, which are available in literature
(52,61). These profiles were derived by solving (2.40) with same initial and boundary
conditions that were used for the reversible and soluble product CV case with the
exception that the Nernst equation cannot be applied. Instead the flux is equated to

reaction rate as derived in (2.16). This results in the following expression

ac, .. ., anF ” (I-a)nF .
p . wr g {Cw exp{—ﬁ(E—E )}—CM exp{T(E—E )D (2.44)

M dx

By solving (2.40) with the new boundary condition, Masuda and Ayabe (67)

showed that the peak shape was a function of @ and a parameter, A

A= k (2.45)

—a e NFV
\/Dol DR

RT
As seen in Table 2.5, the K, =, and A functions depend on a and A. Unfortunately, only
limited work has been done on quasi-reversible systems that involve an insoluble
product. Only the anodic dissolution peak has been characterized, because the deposition
peak is complicated by nucleation which inhibited the application of the expression
derived by Avaca (55) for quasi-reversible electrodeposition. Unfortunately, the anodic
peak for metal dissolution is not as repeatable as the cathodic peak since it depends on the

potential at which the CV was reversed and the morphology of the metal deposit. Thus,
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the applicability of the quasi-reversible equations in Table 2.5 is questionable for the
soluble-insoluble reaction.

By examining the properties of the K function, which is a scaling function for
peak current, some insight can be gained into its applicability to soluble-insoluble
systems. At sufficiently low scan rates, K is equal to one and constant making the peak
current function equivalent to the reversible expression. At a sufficiently high scan rate,
K is equal to a constant value which depends on the value of a so that the resulting peak
current expression is equivalent to the irreversible case. Essentially, at high scan rates, K
is the ratio of the irreversible over the reversible peak function. By comparing the
reversible and irreversible equations in Table 2.5, it can be seen that the only variations in
the peak current expression are the leading constants and the a term in the irreversible
expression. Thus, a constant ratio results if the irreversible expression is divided by the
reversible expressions which results in 0.78 for soluble-soluble reactions and 0.57 for
soluble-insoluble reactions, if @ = 0.5. Hence, theoretically, K function will not result in
the irreversible expression if applied to the Berzins-Delahay equation.

This theoretical exercise can be verified using experimental data. Marsden and
Pesic (68) studied cerium electrodeposition and plotted the peak height for the reduction
of Ce’* to Ce metal versus the square root of scan rate from a very low scan rate (~5
mV/s) to a very high scan rate (~1.5 V/s) at 653 K. This plot is reprinted here in Figure
2.6 in which the peak current clearly transitions from one linear curve to another linear
curve as the scan rate increases. They explained that this is “characteristic of a quasi-
reversible system where the system displays Nernstian behavior at low scan rates but

transitions to irreversibility at high scan rates” (68). They also calculated that at 653 K,



55

0.350

0.300

0.250
0.200 /B/C'
0.150

0.100 -

[ 1] (A)

0.050

0.000 # ; . '
0 0.5 1 1.5
V2 (V172 §1/2)

Figure 2.6 Reduction peak height of Ce®” as a function of the square root of scan rate
(Figure 5 in original work) (68). Reproduced by permission of The Electrochemical
Society.

a = 0.48. Thus, the slope at high scan rates (irreversible region) divide by the slope at
low scan rates (reversible region), should be close to 0.78 for the K function to apply.
The slopes of the reversible and irreversible lines were determined to be 0.369 and 0.193
respectively, by digitizing the two lines in Figure 2.6. This results in a ratio of 0.52 which
is much closer to 0.57 calculated earlier. Thus, it appears that the K function is

inapplicable to soluble-insoluble reactions in theory and practice.

2.5.2.3 Irreversible
The irreversible system is simplified by the assumption that the backward reaction

is negligible reducing (2.44) to the following expression

ac .. ankF ,
D . ——=k°| C. . exp|— E-FE° 2.46
The same problem is solved, (2.40), with the same boundary and initial conditions, as

was done for the quasi-reversible process with the exception that (2.46) is used instead of

(2.44). The benefit of irreversible peaks is that kinetic information can be calculated. As

seen in Table 2.5, the kinetic parameters, a and k,, are found in the expressions for
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irreversible CV peaks. In addition to those expressions, another equation for the peak

current can be derived in terms of the peak potential, as shown below
;- k ankF o 247
,=0.227nFAC, .k, exp —E(Ep ~E") (2.47)

Thus, a plot of the In(I,,) versus E,, — E°’ should yield a linear plot with a slope and an

intercept proportional to an and k,, respectively.

2.5.3. Normal Pulse Voltammetry

Since the waveform for NPV is more complex than other techniques, it is
reprinted and enlarged in Figure 2.7 for convenience. NPV is essentially a series of CA
tests with a “rest” time in between during which no species is electroactive with
exception of reduced species reoxidizing. This is particularly important for metal
electrodeposition at nonpolarographic (i.e., nonrenewing) electrodes. By holding the
potential for an extended period of time (t,) at a base potential (Ey) sufficiently positive,
the deposited metal can reoxidize and the nonpolarographic electrode can return to its
original state. However, not only does the electrode surface need to be allowed to return
to its original state, the diffusion layer needs to as well. Otherwise, an accumulation or
depletion of ions in the diffusion layer could cause the magnitude for the diffusion-

limited current (I4) to be artificially increased or decreased. In the case of depletion, the
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Figure 2.7 Enlargement of NPV waveform (left) and response (right) from Table 2.1
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curve takes on a peak shape, like in CV. In some cases, the time required to renew the
conditions near and at the electrode can require more than 10 s, resulting in a much
slower turnaround time for NPV (>10 min) than for CV (<1 min).

After renewing the electrode surface and diffusion layer, the potential is pulsed
into the region where the species of interest are electroactive for a short amount of time
(tp), and the current is sampled at the end of the pulse. Because this is a potential step
method, all of the considerations and limitations discussed for sampling CA also apply
here. Thus, t, should be long enough that nonfaradaic currents do not significantly
contribute, but should also be short enough that electrode area does not increase.

The measured response for NPV is on the right in Figure 2.7 and plateaus when
the current is diffusion limited. I is directly proportional to concentration as predicted by

the Cottrell equation, (2.35), except that t is replaced by t,.

2.5.4. Open-Circuit Potentiometry

OCP is facilitated by the Nernst equation, (2.8). Thus equilibrium conditions need
to be imposed (i.e., zero current) while the potential is measured. Either the mole fraction
or molar concentration convention can be used. It may be advantageous to remain in the
molar concentration convention, since all the other methods were derived based on the
molar concentration convention. In the case of metal deposition, some metal needs to be
initially present on the electrode in order to record its open-circuit potential with its ion.
This could be done by using an electrode made of the metal of interest or by pre-
depositing some metal on an inert electrode, then enforcing an open-circuit. The
measured potential at open-circuit should vary logarithmically with concentration or mole

fraction. If this behavior can be verified for molten salt mixtures of interest, then it could
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be used to determine concentration.

2.5.4.1 Reference Electrode Conversions

When applying the OCP method, there is a logarithmic relation between
concentration and measured potential. This approach to concentration measurement can
be highly sensitive to small errors in experimental setup or analysis approach. For
example, the conversion between reference electrode potentials can be critical, but there
is inconsistency in the literature regarding that conversion. The potential at a CI'/Cly(1
atm) electrode, the standard chlorine electrode (SCE), is the de facto reference potential
that can be directly related to standard free energy of formation. But it is impractical to
use such an electrode as the reference. Alternatively, an Ag/AgCl reference electrode is a
popular choice for molten chloride systems. But to compare studies on the same basis and
calculate activity coefficients, the potential of such an Ag/AgCl reference electrode must
be converted to the SCE scale. The potential of an Ag/AgCl electrode depends upon the
concentration of AgCl in the RE. Thus, in most works, the potentials measured versus an
Ag/AgCl RE are converted to the SCE potential. In literature there are a couple formulas
and data sets for converting from the Ag/AgCl to the SCE. Unfortunately, they are

inconsistent as shown in Table 2.6.

Table 2.6 Potential difference from Ag/AgCl to SCE

1 wt% o o
Source (0.39 mol%) 1 mol% 5 mol %
Yang-Hudson (69) -1.223 -1.167 -1.071
Shirai et. al. (70) -1.073 -1.017 -0.921
Shirai et. al.* -1.182 -1.119 -1.012
Mottot (71) -1.368 -1.305 -1.198
Lantelme-Berghoute (58) -1.201 - -1.049
*Corrected for sharp density increase near 100 mol% AgCl
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The Yang-Hudson reference measured the potential of the Ag/AgCl potential
experimentally against a SCE and is commonly cited in published experimental studies of
ions in molten LiCI-KCl eutectic. Shirai et al. (70) performed similar work to Yang-
Hudson, but measured significantly different potential values under similar conditions.
However, when extrapolated with respect to molarity as opposed to mol% to account for
the density variations, their value for E°’ produced results more consistent with Yang-
Hudson. An expression derived by Mottot has also been used and is quite different from
the other sources. The Lantelme-Berghoute reference measured the reduction potentials
of La®" and Gd®" ions directly with a SCE. The reduction potentials of these ions were
measured by the author using a 1 wt% and 5 mol% AgCl RE. The values reported in the
last row of Table 2.6 are the calculated difference between the measured and reported
values by Lantelme and Berghoute which agree well with the Yang-Hudson reference.

Such large variation in reported potentials is problematic. This could indicate that
small changes in experimental conditions could drastically affect the recorded potential
values. To demonstrate the impact of small potential variations, a hypothetical situation is
proposed. If a E°’ value is converted to the SCE using the Yang-Hudson data by an
author, then it will need to be converted back to the Ag/AgCl scale to be applied to an
open-circuit potential measured versus Ag/AgCl RE. However, if the factor used to
convert E°' is inconsistent, off calibration or the potential of the RE has slightly shifted,
then the concentration determined from the open-circuit potential could be quite
inaccurate. In this case, the error relative to the Yang-Hudson source introduced by
inconsistent conversion values are reported in Table 2.7, but a shift in the RE potential

would have the same effect. The errors are quite large even when the conversion factors
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Table 2.7 Effect of RE conversion on mol% measurement

Source Shirai et. al. Shirai et al.* Mottot Lantelme-Berghoute
Relative Error 86000% 1300% -100% 169%

used only varied by tens of millivolts. Thus, if OCP is to be employed as a concentration

measurement technique a highly stable RE needs to be employed.

2.6. Summary

This chapter has reviewed the known fundamental theory of electrochemical
kinetics, transport, and thermodynamics from literature and has discussed its application
to the study of electrodeposition of metal, which is the main subject of interest for this
thesis. Derived equations for electroanalytical techniques have been reviewed,
examining their assumptions and applicability to electrodeposition. It is essential to
examine the measured data to ensure that assumptions applied are consistent across all
data sets and concentrations and with the method employed (i.e., CA, CV, etc.);
otherwise, variations in data will be manifested that are unrelated to concentration
variations. This could skew calibration curves or alter diffusion coefficient values. Thus,
before calculating key parameters or constructing calibration curves, certain checks have
been revealed to be necessary from examining the assumptions of the electrochemical
methods. The checks, equations, and theory will be applied and referenced in Chapters 5-

7 in which electrochemical data is analyzed.

2.6.1. Chronoamperometry
The key assumption in CA is that semi-infinite linear diffusion limits the process.

Diffusion limitation can be checked by overlaying the temporal current profile measured
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at various potentials. When the profiles overlap, then the process is confirmed to be

diffusion limited since the Cottrell equation is independent of potential. The semi-infinite
linear diffusion assumption can introduce error into this work since cylindrical electrodes
are used for the WE. Thus, the diameter of WE was held constant within each test matrix

to standardize the error.

2.6.2. Cyclic Voltammetry

Key characteristics of CVs vary with scan rate resulting in three categories: (1)
reversible, (2) quasi-reversible, and (3) irreversible. Plotting the peak height versus the
square root of scan rate can be used to identify transitions from reversibility to quasi-
reversibility or from quasi-reversibility to irreversibility. Linear trends of peak height
with the square root of scan rate indicate either a reversible or irreversible region. The
CVs need to be further classified by analyzing the trend of peak potential with scan rate.
If the peak potential is independent of scan rate then reversibility can be concluded,
otherwise the system is irreversible. Since expressions for quasi-reversible soluble-
insoluble cyclic voltammetry have not successfully been derived and derivation of such

expression is beyond the scope of this dissertation, the quasi-reversible region is avoided.

2.6.3. Normal Pulse Voltammetry

The key to NPV is the assumption that the WE surface and diffusion layer has
been restored to the original state. The main inhibitor to the renewal of the WE surface is
persistent metal deposits. If significant deposits accumulate the NPV signal will not
plateau, but continually increase. The depletion of ions is most likely to be cause of non-

renewal of the diffusion layer since it is conducted in stagnant media. This would be
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indicated by the current slightly decreasing at more extreme potentials. Thus, these
phenomena are observed, the base time will be increased, to the extent possible, which

will allow more time for the renewal of the WE surface or diffusion layer.

2.6.4. Open-Circuit Potentiometry

OCP measurements are subject to shifts in potentials due to drift over time or
differences in the composition of AgCl in the REs used. To check the consistency of the
RE potential, the potential of lithium ion deposition and/or dissolution of the WE will be
used. These values should be consistent because their bulk properties change very little
from one experiment to another.

It is clear from examining the theory that the behavior of ions at each
concentration needs to be determined to avoid introducing variances in the data unrelated
to concentration. Thus, in addition concentration measurements, the analyses and
verification methods discussed will also be performed as part of the results when clear
boundaries between signals are discernable.

In addition to the theory or electrochemistry, some limited practical
considerations have been mentioned for applying electrochemistry to molten salt cells.
The next chapter covers in more detail the practicalities of designing and performing
electrochemical experiments in molten salts. Furthermore, the application of the
electroanalytical theory discussed in this chapter on multi-analyte mixtures depends upon
good separation of the signals. The method of separating the signals is particular to

analyte pairings and is discussed in the chapters relevant to the pairing results.



